Построение графиков в маткаде по формуле. Как построить график функции в "Маткаде"? Советы и рекомендации. Изменение внешнего вида графика

Программа MathCAD обеспечивает стабильное поддержание своих функций уже долгие годы. В этой вычислительной среде работают экономисты, ученые, студенты и другие специалисты, владеющие прикладной и аналитической математикой. Так как математический язык понятен не всем, и не каждый способен за быстрое время его изучить, программа становится сложной для восприятия начинающих пользователей. Нагруженный интерфейс и большое количество нюансов отталкивают людей от использования этого продукта, но на самом деле разобраться в любой рабочей среде возможно - достаточно иметь желание. В этой статье разберем такую важную тему, как построение графиков функций в "Маткаде". Это несложная процедура, которая очень часто помогает при расчетах.

Типы графиков

Помимо того что в MathCAD определены быстрые графики, которые вызываются с помощью горячих клавиш, существуют и другие графические приложения. Например, пользователь может в шапке программы найти раздел "Вставка", а в ней - подраздел "График", в котором можно просмотреть все доступные графики в "Маткаде":

  • График X-Y - показывает зависимость одной величины от другой. Самый распространенный тип, который позволяет быстро оценить и исследовать зависимости.
  • Полярный график - использует полярные координаты. Суть графика - показать зависимость одной переменной от другой только в полярной координатной плоскости.
  • График поверхности - создает поверхность в пространстве.
  • Векторное поле, 3-D график разброса, столбчатая 3-D диаграмма используются для других специальных целей.

Построение графика функции

Невозможно научиться работать с вычислительной средой без примеров, поэтому будем разбираться в MatchCAD на шаблоне.

Допустим, задана функция f(x) = (e^x/(2x-1)^2)-10 в интервале [-10;10], которую необходимо построить и провести исследование. Прежде чем приступить к построению графика функции, необходимо данную функцию перевести в математический вид в самой программе.

  1. После того как функция была задана, следует вызвать окно быстрого графика клавишей Shift + 2. Появляется окошечко, в котором расположены 3 черных квадратика по вертикали и горизонтали.
  2. По вертикали: самый верхний и нижний отвечают за интервалы значений, которые можно регулировать, средний задает функцию, по которой пользователь может построить график в "Маткаде". Крайние черные квадратики оставляем без изменения (значения автоматически присвоятся после построения), а в средний пишем нашу функцию.
  3. По горизонтали: крайние отвечают за интервалы аргумента, а в средний нужно вписать "х".
  4. После проделанных шагов нарисуется график функции.

Построение графика по точкам в "Маткаде"

  1. Зададим диапазон значений для аргумента, в рассматриваемом случае x:=-10,-8.5.. 10 (символ ".." ставится при нажатии на клавишу ";").
  2. Для удобства можем отобразить получившиеся значения "х" и "у". Для первого случая используем математическую формулировку "х=", а для второго - "f(x)". Наблюдаем два столбика с соответствующими значениями.
  3. Построим график, используя сочетание клавиш Shift + 2.

Заметим, что та часть графика, которая устремлялась вверх, исчезла, а на месте нее образовалась непрерывная функция. Все дело в том, что в первом построении функция претерпевала разрыв в некой точке. Второй график был построен по точкам, но, очевидно, что точка, которая не принадлежала графику, не отображена здесь - это одно из особенностей построения графиков по принципу точек.

Табуляция графика

Чтобы избавится от ситуации, где функция претерпевает разрыв, необходимо протабулировать график в "Маткаде" и его значения.

  1. Возьмем известный нам интервал от -10 до 10.
  2. Теперь запишем команду для переменного диапазона - x:=a,a + 1 .. b (не стоит забывать, что двоеточие - результат нажатия клавиши ";").
  3. Смотря на заданную функцию, можно сделать вывод о том, что при значении "х=1" будет происходить деление на ноль. Чтобы без проблем протабулировать функцию, стоит исключить эту операцию так, как показано на картинке.
  4. Теперь можно наглядно отобразить значения в столбиках, как мы это делали с построением по точкам. Табуляция выполнена, теперь все значения с шагом в одну единицу соответствуют своим аргументам. Обратите внимание, что на "х=1" значение аргумента не определенно.

Минимум и максимум функции

Чтобы найти минимум и максимум функции на выбранном участке графика в "Маткаде", следует использовать вспомогательный блок Given. Применяя этот блок, необходимо задать интервал поиска и начальные значения.

  1. В рассматриваемом случае начальное значение x:=9.
  2. Запишем рабочую команду для поиска максимального значения - X max =Maximize(f,x) и вычисляем значение через знак равенства.
  3. Через блок Given запишем условие для x.
  4. Задаем минимум функции по аналогии с максимумом.
  5. Результаты получились следующими: значение минимума на графике с указанным интервалом f(x) = 2,448*10 198 , а значение минимума f(x) = -10.

В этом уроке мы рассмотрим варианты графиков, доступных в PTC Mathcad Prime 3.0.

Типы графиков

Чтобы изменить тип графика, нажмите на него, затем выберите на вкладке Графики –> Кривые –> Изменить тип. Ниже представлены рисунки четырех типов графиков для функции:

В списке есть еще некоторые типы осей – некоторые из них мы будем использовать позднее.

Несколько графиков на одних осях

Чтобы добавить кривую на оси, поместите курсор после обозначения легенды оси Y графика и нажмите Графики –> Кривые –> Добавить кривую. Появится еще один местозаполнитель для оси Y:

Вы можете добавить больше графиков с помощью этой же команды.

С помощью вывода нескольких графиков на одни оси мы посмотрим различные настройки из меню Графики –> Стили. Для этой цели мы создадим оси с пятью различными прямыми линиями. Каждая линия содержит 11 точек:

Ниже этих выражений вставьте график XY, затем добавьте четыре легенды для оси Y. В местозаполнителе для оси Xвведите x – для всех пяти графиков будет использоваться одна легенда по оси X. В последний местозаполнитель для оси Y введите y:

Выше следует ввести y:

Параметрический график

Этот график окружности построен с использованием параметра t :

Графики в логарифмическом масштабе

Логарифмический масштаб часто используется в различных областях науки и техники. Построение графиков в логарифмическом масштабе доступно в Mathcad.

Построим график функции y= x­ 2 , но с использованием параметра:

Чтобы сделать ось X логарифмической, выберите легенду оси X и нажмите Графики –> Оси –> Логарифмический масштаб. Проделайте то же самое для оси Y. В логарифмическом масштабе эта функция представляет собой прямую линию:

Резюме

В этом уроке мы показали, как можно модифицировать двумерные графики.

  1. Чтобы изменить тип кривой, нажмите на его легенду по оси Y и выберите Графики –> Кривые –> Изменить тип.
  2. Чтобы добавить кривую:
  • поместите курсор на легенду оси Y;
  • нажмите Графики –> Кривые –> Добавить кривую.
  1. Чтобы изменить символы, цвет, стиль или толщину кривой, нажмите по легенде оси Y соответствующего графика и настройте график с помощью меню Графики –> Стиль.
  2. Чтобы промасштабировать график, разделите легенду соответствующей оси на коэффициент масштабирования.

MathCad обладает прекрасными графическими возможностями. Для работы с графикой необходимо отрыть панель Graph (Графические), на которой изображены различные типы графиков. В первую очередь, нас будет интересовать декартов график (самый первый на панели График ).

Задача 10. Построить график функции y=сos(x) на отрезке c шагом 20 0 .

Прежде всего, подготовим данные для построения графика. Для этого запишем х как дискретную переменную, учитывая, что аргументом тригонометрической функции могут быть только радианы, а тригонометрическую функцию запишем как функцию пользователя.

Программа в MathCad:

Пользователю необходимо заполнить только нижнее центральное поле и центральное поле с левой стороны графика, а затем щелкнуть курсором в любом месте за пределами графика (остальные поля заполняются автоматически). Тогда, график будет иметь вид:


Полученная картинка − машинный график функции косинуса, который можно отформатировать. Для этого необходимо один раз щелкнуть по графику левой клавишей мышки (сделать его активным) и воспользоваться меню: Формат=>График=>График Х-Y (есть и второй более простой вариант − два раза быстро щелкнуть левой клавишей мышки по графику). В результате появиться окно, которое называется Formatting Correntu Selected X-Y (Форматирование выбранного графика) . Окно имеет несколько вкладок:

Первая вкладка: X-Y-Axes (оси Х-Y) позволяет работать c осями. Рассмотрим по порядку имеющиеся поля:

Log Scale (Логарифмический масштаб) – позволяет включить логарифмическую шкалу по оси Х или Y. Полезно использовать, если данные меняются на несколько порядков.

Grind Lines (Линии сетки) – позволяет включить сетку (точнее автосетку) по оси Х и Y. Число линий сетки задается автоматически. Цвет сетки (первоначально зеленый) можно изменить, используя поле, расположенное слева от надписи.

Numbered (Нумерация) − позволяет вывести значения Х или У по сторонам прямоугольной области.

Autoscale (Автомасштабирование) – позволяет автоматически выбрать диапазон осей.

Show Markers (Показывать метки) – выделение значений на осях. На осях появляются маркеры, в которые вводят координаты выделяемых на графике точек.

Auto Grid (Автосетка) – отключение автосетки, что позволяет в нижнем окошке указать нужное количество линий сетки по оси X и Y.

В поле Ases Stule (Вид оси) можно установить следующие переключатели:

- Boxed (Отобразить по краям ) оси устанавливаются по краям прямоугольника в наименьших точках диапазона;

- Grosed (Пересеченные) – оси устанавливаются по центру координат в точке (0,0);

- None (Не отображать) – оси не отображаются ;

- Egual Scales (равные шкалы) – разбиение осей в равном масштабе, например это важно при построении окружности.

Форматируя график, устанавливая флажки (галочки), не забывайте нажимать на кнопку применить, чтобы изучить эффект действия того или иного переключателя.

Следующая вкладка Traces (Трассировка) предназначена для форматирования (изменения) самой линии. Она содержит следующие поля:

- Legend Label (Обозначение легенды) – поле в котором записано имя кривой (по умолчанию − Traсe1(кривая 1). В это поле можно ввести также другое название кривой, например, сos;

- Частота символов – определяет число символов на кривой;

- Symbol (Символ) – графическое обозначение точки. MathCad предлагает 10 вариантов обозначения точки;

- Ширина символа – размер графической точки. С увеличением задаваемого числа размер символа увеличивается;

- Line (Линия) − тип линии, которая может быть сплошной пунктирной и т.д. Можно вообще отказаться от линии. Следует учитывать, что MathCad по умолчанию соединяет символы отрезками прямых;

- Толщина линии – задается толщина линии (отрезков, которые соединяют символы). C увеличением задаваемого числа толщина линии увеличивается;

- Соlor (Цвет) – задается цвет линии;

- Туpe (Тип) – задается тип графика, который может быть столбиковой диаграммой, ступенчатой кривой и т.д.

После форматирования график функции синуса может выглядеть так:

MathCad способен также строить графики в автоматическом режиме, но только на отрезке [-10; 10].

Задача 11. Построить графики двух функций: y=5*sin(x) и y=5*cos(x).

Программа в MathCad:

Для построения графиков вызывают шаблон графика и в левой центральной части графика сначала записывают первую функцию, затем вводят запятую и в образовавшее нижнее поле (маркер) вводят вторую функцию. Внизу графика в центральное поле вводят аргумент, от которого зависят оба графика. В результате имеем:


При работе с графиком иногда приходится пользоваться командой трассировка (для вызова этой команды необходимо активировать график и нажать на правую клавишу мышки). Если теперь щелкнуть по кривой графика, то в соответствующих полях Х и Y окна Трассировка графика X-Y появляются координаты той точки линии, на которую указывает курсор. Такой способ позволяет быстро исследовать функцию и получить значения аргумента и функции любой точки кривой.

Другая команда, вызываемая правой клавишей мышки, − масштаб позволяет увеличивать или уменьшать участки графика. Для этого, щелкнув по графику, нажимают на правую кнопку мышки (активируют график), выбирают команду масштаб. Теперь выделяют мышкой на графике прямоугольный участок, который необходимо увеличить (уменьшить), и в появившемся окне Mасштаб графика X-Y нажимают на плюс (+), если надо увеличить рисунок, или на минус (-) , если его надо уменьшить. Эту операцию можно повторять многократно до тех пор, пока изображение не достигнет нужного масштаба.

Mathcad допускает создание новых функций от одного и более аргументов. Определение функции записывается в строчку в следующем порядке:

1. Имя новой функции. На имена функций распространяются те же правила, что и на имена переменных.

2. Список аргументов в круглых скобках через запятую.

3. Стандартный символ присваивания «:= ».

4. Выражение, определяющее значение функции от аргументов.

Обращение к функции записывается в традиционной математической форме: упоминание имени функции, сразу после которого идет список значений аргументов в круглых скобках через запятую.

Пример 1.

Возможно построение следующих типов графиков:

1. Линейный (в прямоугольных (декартовых) и полярных координатах).

2. Поверхность.

3. Линии уровня поверхности.

4. 3D столбиковая диаграмма.

5. 3D точечный и векторный графики.

Для построения любого графика необходимо сначала определить на листе все данные, необходимые для построения, затем вставить на лист соответствующий графический регион и связать его с отображаемыми данными. Для вставки графического региона можно использовать соответствующие кнопки панелиMath Graph либо выбрать требуемый пункт в верхнем меню Insert Graph (Вставка График ). Связь с отображаемыми данными производится путем указания этих данных в позициях ввода графического региона.

Рассмотрим более подробно команды меню Math Graph (слева изображены соответствующие кнопки панели Graph ):

X-Y Plot (Декартов график ) клавиша @. Служит для построения графика функции y =f (x ) в виде связанных друг с другом пар координат (x i , y i ) при заданном промежутке изменения для i .

Polar Plot (Полярный график ) клавиши Ctrl+7. Служит для построения графика функции r (q ), заданной в полярных координатах, где полярный радиус r зависит от полярного угла q .

Surface Plot (График поверхности ) клавиши Ctrl+2. Служит для представления функции z =f (x , y ) в виде поверхности в трехмерном пространстве. При этом должны быть заданы векторы значений x i и y j , а также определена матрица вида A i,j = f (x i , y j ). Имя матрицы A указывается при заполнении рамки-шаблона.

Contour Plot (Карта линий уровня ). Строит диаграмму линий уровня функции вида z =f (x , y ), т. е. отображает точки, в которых данная функция принимает фиксированное значение z =const.

3D Bar Plot (3D Столбиковая гистограмма ). Служит для представления матрицы значений A i,j z =f (x , y ) в виде трехмерной столбчатой диаграммы.

3D Scatter Plot (3D Точечный график ). Служит для точечного представления матрицы значений A i,j или отображения значений функции z =f (x , y ) в заданных точках. Эта команда может также использоваться для построения пространственных кривых. В этом случае при заполнении рамки-шаблона можно задать три координаты отдельными векторами одинаковой размерности в виде .

Vector Field Plot (Векторное поле ). Служит для представления двухмерных векторных полей V =(V x , V y ). При этом компоненты векторного поля V x и V y должны быть представлены в виде матриц. При помощи этой команды можно построить поле градиента функции f (x , y ).

Двумерные графики. Для регионов линейных графиков (рис. 1) заполняются две основные позиции ввода - слева и снизу от графика.

а ) б )

Рис. 1. Вид региона для линейного графика до (а ) и после (б ) заполнения одной из основных позиций ввода

В нижней позиции 2 указывается выражение, определяющее значения абсцисс графика. Выражение - имя последовательности, вектора или обычной переменной. Может быть несколько выражений через запятую. При необходимости можно указать в дополнительных позициях 3 и 4 минимальное и максимальное значения.

В позиции 1 указывается выражение, определяющее значения ординат графика. Можно перечислить несколько выражений через запятую - в этом случае будет построено несколько графиков в одних координатах. Выражения обычно являются функциями от аргумента, указанного в позиции 2. Тем не менее, могут быть построены и графики от двух функций заданных параметрически, в этом случае в позициях 1 и 2 указываются имена этих функций (рис. 2).

Рис. 2. Фрагмент листа Mathcad с линейными графиками двух функций (параметрической (x (t ); y (t )) и обычной f (t ))

Форматирование двумерных графиков. Для вывода окна форматирования двухмерного графика достаточно поместить указатель мыши в область графика и дважды щелкнуть левой кнопкой мыши. В окне документа появится окно форматирования (рис. 4).

Оно имеет ряд вкладок:

-X-Y Axes (Оси X-Y );

-Traces (Трассировки );

-Labels (Метки );

- Defaults (Умолчание ).

Вкладка становится активной, если установить на ее имя указатель мыши и щелкнуть левой кнопкой.

Первая из вкладок X-Y Axes (Оси X-Y ) позволяет форматировать оси координат:

-Log Scale (Логарифмическая шкала ) - задает логарифмические оси, в этом случае границы графика должны задаваться положительными числами;

- Grid Lines (Вспомогательные линии ) - задает отображение сетки;

- Numbered (Нумерация ) - задает отображение подписи к маркировкам на осях;

- Autoscale (Автомасштаб ) - задает автоматическое нахождение подходящих границ для осей. Но если вы сами зададите в соответствующих ячейках минимальные и максимальные значения x min , x max , y min , y max , именно эти значения будут использоваться для определения границ графика;

- Show Markers (Показать метки ) - если установить эту опцию, то в графической области появятся четыре дополнительные ячейки для создания красных линий маркировки, соответствующих двум специальным значениям x и двум специальным значениям y ;

- Auto Grid (Авто сетка ) - при установке этой опции число линий сетки определяет Mathcad.

- Axes Style (Стиль осей графика ) - группа кнопок этой области позволяет выбрать следующие варианты представления осей: Boxed (Ограниченная область ), Crossed (Пересечение ) - оси пересекаются в точке с координатами (0; 0), None (Без границ ). Флажок Equal Scales (Равные масштабы ) позволяет задать одинаковый масштаб для обеих осей.

Форматирование оси графика можно произвести, выполнив на ней двойной щелчок.

Для изменения типа линий графиков необходимо активизировать вкладку Traces (Трассировки )(рис. 5):

- Legend Lable (Легенда ) - каждой кривой можно поставить в соответствие некоторый текст, называемый легендой. Легенда отображается в нижней части графической области, а рядом с каждой легендой отображается тип линии соответствующей кривой;

- Symbol (Символ ) - позволяет выбрать символ для каждой точки кривой (плюс, крестик, кружок и др.);

- Line (Линия ) - можно выбрать один из следующих типов линий: solid (сплошная), dash (штриховая), dot (точечная) или dadot (штрихпунктирная). Это поле списка доступно в случае, если в поле Type (Тип ) выбран элемент lines;

- Color (Цвет ) - задается цвет представления кривой на экране;

- Type (Тип ) - позволяет выбрать один из видов графика: в виде линий, в виде точек и т. п.;

- Weight (Вес ) - позволяет задавать толщину линий графика.

В нижней части вкладки Traces расположены опции:

- Hide Arguments (Скрыть аргументы ) - эта опция по умолчанию отключена. В этом случае под именем функции рядом с осью ординат указывается текущий тип линий. Если установить данную опцию, указание типа линий исчезнет;

- Hide Legend (Скрыть легенду ) - по умолчанию легенда не отображается. Если вы хотите отобразить под графиком текст легенды, его необходимо перед этим ввести в поле Legend Lable (Легенда ) и подтвердить ввод, выполнив щелчок на кнопке Применить .

Вкладка Labels (Метки ) позволяет ввести заголовок графика и подписи для осей (рис. 6).

В меню Format Graph (Формат График ) содержится команда Zoom (Изменение масштаба ). При помощи этой команды можно увеличить фрагмент графика, предварительно выделив его протаскиванием мышки с нажатой левой клавишей. После отпускания клавиши координаты углов выделенной области будут отображены в полях окна X-Y Zoom (рис. 7). При помощи кнопки Zoom (Масштаб + ) фрагмент можно увеличить, при помощи кнопки Unzoom (Масштаб – ) отменить выделение фрагмента, а при помощи кнопки Full View (Обзор ) - восстановить первоначальный вид графика. Если вы увеличили фрагмент графика, то при щечке на кнопке OK в документе будет отображаться только этот фрагмент.

Трехмерные графики. Построение графика функции z =f (x , y ) в виде поверхности в декартовой системе координат. Для построения графика поверхности можно воспользоваться двумя способами:

1. Необходимо определить функцию f (x , y ) и на панели Graph выбрать Surface Plot (График поверхности ). В появившейся графической области под осями на месте шаблона для ввода надо указать имя (без аргументов) функции. Независимые переменные x и y принимают значения из промежутка [–5; 5] (рис. 8).

При необходимости этот промежуток может быть уменьшен или увеличен. Для этого необходимо дважды щелкнуть правой кнопкой мыши по выделенному графику и в появившемся окне 3D Plot Format (Формат 3D графика ) на вкладке QuickPlot Data можно установить другие параметры изменения независимых переменных x и y (рис. 9).

2. Для построения графика поверхности в определенной области изменения независимых переменных или с конкретным шагом их изменения необходимо сначала задать узловые точки x i и y j , в которых будут определяться значения функции. После (а можно и до) этого надо определить функцию f (x , y ), график которой хотите построить. После этого необходимо сформировать матрицу значений функции в виде: A i,j =f (x i , y j ) (рис. 10).

Теперь после выполнения команды Graph Surface Plot в появившейся графической области достаточно ввести имя матрицы (без индексов).

3. Также для построения графика поверхности в определенной области изменения независимых переменных или с конкретным шагом их изменения можно использовать функцию:

M:=CreateMesh(f,xn,xk,yn,yk,s1,s2),

где f - функция, определяющая поверхность; xn , xk , yn , yk - начальные и конечные значения независимых переменных x и у ; s1 , s2 - размерность сетки.

После выполнения команды Graph Surface Plot в появившейся графической области вводится имя переменной (в данном случае M ).

Построение графика кривой в пространстве. Трехмерные точечные графики можно использовать для построения изображения пространственных кривых. Пространственные кривые задаются, как правило, в виде (x (t ), y (t ), z (t )), где t представляет собой непрерывный действительный параметр (рис. 11).

Поскольку при построении трехмерной точечной диаграммы Mathcad позволяет отображать на графике только отдельные точки и соединяющие их линии, необходимо сначала определить три вектора координат - x i , y i , z i . Пространственная кривая создается командойGraph Scatter Plot .

Форматирование трехмерных графиков. Если вас не устраивает внешний вид созданного трехмерного графика, вы можете изменить его, выполнив команду Format -> Graph -> 3D Plot или выполнив двойной щелчок мышкой на графической области. В результате на экране появится диалоговое окно 3D Plot Format , позволяющее изменять параметры отображения графика. Мы рассмотрим здесь основные опции. Разобраться во всех тонкостях управлением видом графика вы можете самостоятельно, построив график и поэкспериментировав, выбирая те или иные опции.

Диалоговое окно 3D Plot Format содержит несколько вкладок (рис. 12).

На вкладке General (Общее ):

В области View (Вид ) можно задать направление взгляда наблюдателя на трехмерный график. Значение в поле Rotation определяет угол поворота вокруг оси Z в плоскости X -Y . Значение в поле Tilt задает угол наклона линии взгляда к плоскости X -Y . Поле Zoom позволяет увеличить (уменьшить) графическое изображение в число раз, равное цифре, указанной в поле;

В области Axes Style (Стиль осей ) задать вид осей, выбрав селекторную кнопку Perimetr (Периметр ) или Corner (Угол ). В первом случае оси всегда находятся на переднем плане. При выборе кнопки Corner точка пересечения осей Ox и Oy задается элементом A 0,0 матрицы A ;

В области Frames (Границы графика ) опция Show box (Каркас ) предназначена для отображения вокруг графика куба с прозрачными гранями, а опция Show border (Границы ) позволяет заключить график в прямоугольную рамку;

В области Plot 1 (Plot 2...) Display as: (График 1 Показывать как: ) имеются селекторные кнопки для представления графика в других видах (контурный, точечный, векторное поле и др.);

Элементы вкладки Axes (Ось ) позволяют изменять внешний вид осей координат (рис. 13).

Посредством опций области Grids (Сетки ) можно отобразить на графике линии, описываемые уравнениями x , y , z = const.

Если установлены опции Show Numbers (Нумерация ), отображаются метки на осях и подписи к ним.

При этом рядом с осями Ox и Oy указываются не значения узловых точек x i , y j , а значения индексов i и j , в то время как ось Oz размечается в соответствии с промежутком, которому принадлежат элементы матрицы значений A i,j .

Если установлена опция Auto Grid (Авто сетка ), программа самостоятельно задает расстояние между соседними отметками на осях. Вы можете сами указать число линий сетки, если отключите указанную опцию.

Если установлена опция Auto Scale (Авто шкала ), то Mathcad сам определяет границы построения графика и масштабы по осям. Можно отключить данную опцию и для каждой оси самостоятельно задать пределы изменения переменных в полях Minimum Value (Минимум ) и Maximum Value (Максимум ).

Вкладка Appearance (Внешний вид ) позволяет изменять для каждого графика вид и цвет заливки поверхности (область Fill Options ); вид, цвет и толщину дополнительных линий на графике (область Line Options ); наносить на график точки данных (опция Draw Points области Point Options ), менять их вид, размер и цвет.

Вкладка Lighting (Освещение ) при включении опции Enable Lighting (Включить освещение ) позволяет выбрать цветовую схему для освещения, установить несколько источников света, выбрав для них цвет освещения и определив его направление.

Вкладка Backplanes (Основание ) позволяет изменить внешний вид плоскостей, ограничивающих область построения: цвет, нанесение сетки, определение ее цвета и толщины, прорисовка границ плоскостей.

На вкладке Special (Специальный ) можно изменять параметры построения, специфичные для различных типов графиков.

Вкладка Advansed (Дополнительно ) позволяет установить параметры печати и изменить цветовую схему для окрашивания поверхности графика, а также указать направление смены окраски (вдоль оси Ox , Oy или Oz ). Включение опции Enable Fog (Наличие тумана ) делает график нечетким, слегка размытым (полупрозрачным). При включении опции Perspective (Перспектива ) появляется возможность указать в соответствующем поле расстояние до наблюдателя.


Похожая информация.


Постановка задачи:

1. Построить график функции f(x) согласно варианту из таблицы №1. Найти и записать приближенные корни уравнения f(x)=0 с помощью трассировки.

2. Построить два совмещенных графика f1(x) и f2(x), где f1(x)-f2(x)=f(x) на одной координатной плоскости. Найти и записать приближенные корни уравнения f(x)=0 с помощью трассировки.

3. Скопировать график функции f(x), на нем изменить стиль осей с ограничения на пересечение.

4. Найти точные корни уравнения f(x)=0, используя функцию root.

Типовой пример:

Задание 1. Построить график функции . Найти и записать приближенные корни уравнения f(x)=0 с помощью трассировки.

1. Выбираем на Панели инструментов графики (Graph) кнопку Координаты X-Y (X-Y-Plot) – появится пустой шаблон графика.

2. Вводим в метку оси y – функцию , а в метку оси x – неизвестную переменную x, нажимаем Enter – появится график функции.

3. Там, где функция пересекается с осью ox, там находятся корни уравнения. Отформатируем график для нахождения приближенных значений корней. Для этого:

3.1. щелкаем по графику левой кнопкой мыши, изменяем минимальные и максимальные пределы изменения по x (-5;5), по y (-3;3) и нажимаем Enter;

3.2. два раза щелкаем мышью по графику – появится диалоговое окно Formatting Currently Selected X-Y Axes. Окно содержит 4 корешка: Оси X-Y (X-Y Axes), Следы (Traces), Ярлыки (Labels), По умолчанию (Defaults).



3.3. в корешке Оси X-Y (X-Y Axes) расположены пункты для выбора форматирования осей графика:

Мерн. линейка (Log Scale) – нумерует оси в логарифмической последовательности;

Линии сетки (Grid Lines) – выводит вспомогательные линии сетки;

Пронумеровать (Numbered) – выводит нумерацию осей;

Автомасштаб (Autoscale) – устанавливает автоматический масштаб;

Показать маркеры (Show Markers) – устанавливает режим показа меток;

Число клеток решетки (Number Of Grid) – установка числа вспомогательных линий сетки.

Стиль осей (Axes Style) – позволяет выбрать стиль изображения осей графика:

Блочный (Boxed) – выводит график в рамке без осей;

Скрещив. (Crossed) – выводит график с осями;

Нет (None) – выводит график без осей и рамки.

Равные веса (Equal Scale) – устанавливает одинаковый масштаб по оси x и y.

Для нашего графика ставим галочки по каждой оси: Линии сетки (Grid Lines), Пронумеровать (Numbered), устанавливаем Число клеток решетки (Number of Grids) по оси x – 10, по оси y – 6, выбираем стиль осей - Блочный (Boxed).

3.4. в корешке Traces (Следы) находятся пункты для форматирования линий графика.

Подпись (Legend Label) – условный номер линии графика;

Символ (Symbol), Линия (Line), Цвет (Color), Тип (Type), Ширина (Weight) – устанавливают характеристики линии на графике.

Скрыть аргументы (Hide Arguments) – убирает с экрана подписи осей x и y;

Скрыть легенду (Hide Legend) – убирает с экрана подпись линии графика.

Для нашего графика меняем Цвет (Color) на голубой (blue) и ширину (Weight) делаем =2.

4. С помощью трассировки находим приближенные корни уравнения. Для этого щелкаем правой кнопкой по графику, выбираем команду Трассировка (Trace). С появлением окна X-Y-Trace щелкаем по кривой левой кнопкой мыши в точке пересечения кривой графика и оси x – в окне появляются значения x,y, где x – приближенный корень уравнения.

5. Оформить задание 1 как показано на рис. 1.

Рис. 1. График функции f(x)

Задание 2. Построить два совмещенных графика f1(x) и f2(x), где f1(x)-f2(x)=f(x) на одной координатной плоскости. Найти и записать приближенные корни уравнения f(x)=0 с помощью трассировки.

1. Разобьем функцию на две, перенеся в правую часть, получим . Построим на одном графике две функции y= и y= . Для этого выбираем кнопку X-Y-Plot – появится пустой шаблон графика.

2. Вводим в метку оси y - , затем, затем , а в метку оси x – неизвестную переменную x, нажимаем Enter – появится совмещенный график двух функций.

3. Там, где функции и пересекаются, там находятся корни уравнения. Отформатируем график аналогично, как в прошлом задании. С помощью трассировки найдем приближенные корни уравнения.

4. Оформить задание 2 как показано на рис. 2.

Рис. 2. Совмещенный график функций

Задание 3. Скопировать график функции f(x), на нем изменить стиль осей с ограничения на пересечение.

1. Выделяем график функции , обведя вокруг него рамку. В меню Правка (Edit) выбираем команду Копировать (Copy). Устанавливаем курсор там, где будет располагаться копируемый график. Выбираем в меню Правка (Edit) команду Вставить (Paste).

2. Два раза щелкаем мышью по графику – появится диалоговое окно Formatting Currently Selected X-Y Axes. В корешке Оси X-Y (X-Y Axes) галочку сменим с Блочный (Boxed) на Скрещив. (Crossed)

3. Оформить задание 3 как показано на рис. 3.

Рис. 3. График функции с осями

Задание 4. Найти точные корни уравнения f(x)=0, используя функцию root.

Варианты заданий:

Таблица 1

Вид функции f(x) Вид функции f(x)
1. sin(x) + 4x – 1 19. x 1/2 – 2sin(x)
2. x 3 + 5x – 3 20. 1/(2x) – cos(x)
3. e x + x 2 – 3 21. 3sin(x) – x 2 + 1
4. e x + 2x – 2 22. cos(x) – 2x 2
5. x 3 + 5x 2 – 1 – x 23. x 1/3 – cos(3x)
6. x 2 - 20sin(x) 24. tg(x) – 2x
7. ctg(x) – x/10 25. lg(x) – 2cos(x)
8. x 3 – 3x 2 – 9x + 2 26. 2ln(x) – x 3 + 6
9. x 3 – 6x – 8 27. 3ln(x) – x/4 – 1
10. tg(0,5x) – x 2 28. 2ln(x) – 1/x
11. 5 x – 1 – 2cos(x) 29. e x + x 2 – 2
12. ctg(x) – x/2 30. x 3 + 4x 2 – 8
13. e -x – (x – 1) 2 31. ln(x) + 7/(2x + 6)
14. x×ln(x) – 1 32. e -x - x 2
15. 2 x – 2x 2 + 1 33. ln(x) – x -2
16. x - 0,5sin(x) – 2 34. x - sin(x) – 0,25
17. 2cos(x) – (x 2)/2 35. x - 3cos 2 (x)
18. x 2 – (x) –2 + 10x

Контрольные вопросы:

© 2024 tdv-elektro.ru
Windows. Железо. Интернет. Безопасность. Программы